1. 1. AI & ML Services
    ❱
    1. 1.1. AI Building Blocks
    2. 1.2. AI Hub
    3. 1.3. AI Platform
    4. 1.4. Cloud AutoML
  2. 2. Compute Services
    ❱
    1. 2.1. App Engine
    2. 2.2. Cloud Functions
    3. 2.3. Compute Engine
    4. 2.4. Kubernetes Engine
  3. 3. Data Analytics Services
    ❱
    1. 3.1. BigQuery
      ❱
      1. 3.1.1. Storage & Database Services
        ❱
        1. 3.1.1.1. database_services
      2. 3.1.2. Architecture
      3. 3.1.3. Automatic schema detection
      4. 3.1.4. Best practices
      5. 3.1.5. Build Streaming data pipelines
      6. 3.1.6. CLI
      7. 3.1.7. Caching
      8. 3.1.8. Clustered Tables
      9. 3.1.9. Copying dataset
      10. 3.1.10. Create & Query Permanent Table on Cloud Storage bucket
      11. 3.1.11. Create Cloud Storage bucket
      12. 3.1.12. Designing Efficient Schemas
      13. 3.1.13. Example of End-to-end Data Pipeline
      14. 3.1.14. Execution Plan
      15. 3.1.15. External data source Limitations
      16. 3.1.16. Field partition
      17. 3.1.17. Ingestion time partition tables
      18. 3.1.18. Managing access
      19. 3.1.19. Manual operations on Table
      20. 3.1.20. Materialized Views
      21. 3.1.21. Maximum bytes billed
      22. 3.1.22. Native operations on Table for Schema change
      23. 3.1.23. Pricing
      24. 3.1.24. Python lib
      25. 3.1.25. Query settings
      26. 3.1.26. Saved queries
      27. 3.1.27. Scheduled queries
      28. 3.1.28. Streaming data
      29. 3.1.29. Table partitioning
      30. 3.1.30. UI
      31. 3.1.31. Views
      32. 3.1.32. When to use Clustering or Partitioning or Both
      33. 3.1.33. Wildcards
    2. 3.2. Big Query
    3. 3.3. Cloud Dataflow
    4. 3.4. Cloud Datalab
    5. 3.5. Cloud Dataproc
    6. 3.6. Cloud Pub Sub
    7. 3.7. Data Studio
  4. 4. DevOps Services
    ❱
    1. 4.1. Cloud Build
    2. 4.2. Cloud Source Repositories
    3. 4.3. Container Registry
    4. 4.4. Example1
  5. 5. GCP-Notions
    ❱
    1. 5.1. Project
    2. 5.2. Resource
  6. 6. Identity & Access Management
  7. 7. Images
  8. 8. Network Services
  9. 9. Notions
    ❱
    1. 9.1. CI-CD
    2. 9.2. Docker
    3. 9.3. Ingestion
    4. 9.4. Kubernetes
    5. 9.5. NoSQL
    6. 9.6. Normalization-Denormalization
    7. 9.7. RDBMS
    8. 9.8. REST
    9. 9.9. Redis
    10. 9.10. Serverless
    11. 9.11. Window function
    12. 9.12. failover
    13. 9.13. in-memory data store
    14. 9.14. on-premises
    15. 9.15. provisioning
  10. 10. Main

Redis